Coordinated regulation of autophagy by energy-sensing machineries

AMPK and mTORC1 regulate autophagy through direct phosphorylation

Joungmok Kim

Department of Oral Biochemistry and Molecular biology Research Center for Tooth and Periodontal Tissue Regeneration School of Dentistry, Kyung Hee University

Nov08/2013

Autophagy (macroautophagy)

- : A bulk degradation process to maintain cellular homeostasis in response to cellular stresses
- : Double-membrane vesicles, "autophagosome"
- : Recycle cellular contents to provide energy or new building blocks
- : Remove the damaged or long-lived proteins/organelles, or pathogens

ULK1 (a mammalian homologue of yeast ATG1)

ATG1 (Yeast)

: A protein kinase triggering autophagy as a most ups tream regulator in yeast

: ATG1 complex formation is required for the kinase a ctivity and sensitive to rapamycin or nutrient level

ATG1 complex

ULK1 (Mammals)

- : mammalian homologue of yeast Atg1, a protein kinase activity
- : Corresponding mammalian counterparts are identified (Atg13 mAtg13; Atg17 FIP200)
- : However, ULK1 complex, is shown to be a stable complex insensitive to nutrient level

ULK1 and AMPK is required for starvation-induced autophagy

Glucose starvation activates ULK1 by phosphorylation

AMPK phosphorylates ULK1 at S317/S777 in response to glucose starvation

Phosphorylation of S317/S777 is required for ULK1 activation in response to glucose starvation

mTORC1 directly phosphorylates ULK1 at S757

mTORC1-mediated ULK1 S757 phosphorylation suppresses AMPK-ULK1 interaction

Inhibition of mTORC1 is required for ULK1 activation by AMPK

1

AMPK-dependent ULK1 phosphorylation is important for autophagy in response to glucose starvation

Proposed model

AMPK phosphorylates to inhibit mTORC1, thereby relieving S757 phosphorylation, which allows AMPK-ULK1 interaction upon glucose starvation

S317 and S777 of mULK1 are major phosphorylation site in vitro and this phosphorylation is important to ULK1 activation in response to nutrient starvation

Acknowledgement

UCSD Moores Cancer Center Sanford Consortium for regenerative medicine Dr. Kun-Liang Guan

Dept. of Oral biochemistry and Molecular biology, School of Dentistry, Kyung Hee Univ.

All of Lab members

